A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations Artículo académico uri icon

Abstracto

  • AbstractWe present a priori and a posteriori error analyses of a virtual element method (VEM) to approximate the vibration frequencies and modes of an elastic solid. We analyse a variational formulation relying only on the solid displacement and propose an $H^{1}(\Omega )$-conforming discretization by means of the VEM. Under standard assumptions on the computational domain, we show that the resulting scheme provides a correct approximation of the spectrum and prove an optimal–order error estimate for the eigenfunctions and a double order for the eigenvalues. Since the VEM has the advantage of using general polygonal meshes, which allows efficient implementation of mesh refinement strategies, we also introduce a residual-type a posteriori error estimator and prove its reliability and efficiency. We use the corresponding error estimator to drive an adaptive scheme. Finally, we report the results of a couple of numerical tests that allow us to assess the performance of this approach.

fecha de publicación

  • 2020

Número de páginas

  • 35

Página inicial

  • 322

Última página

  • 357

Volumen

  • 40

Cuestión

  • 1